Recent Advances in Watermarking for Scalable Video Coding
نویسندگان
چکیده
The H.264/AVC (ISO/IEC MPEG-4 Part 10) video coding standard (Wiegand & Sullivan, 2003), which was officially issued in 2003, has become a challenge for real-time video applications. Compared to the MPEG-2 standard, it gains about 50% in bit rate, while providing the same visual quality. In addition to having all the advantages of MPEG-2 (ITUT & ISO/IEC JTC 1, 1994), H.263 (ITU-T, 2000), and MPEG-4 (ISO/IEC JTC 1, 2004), the H.264 video coding standard possesses a number of improvements, such as the contentadaptive-based arithmetic codec (CABAC), enhanced transform and quantization, prediction of "Intra" macroblocks, and others. H.264 is designed for both constant bit rate (CBR) and variable bit rate (VBR) video coding, useful for transmitting video sequences over statistically multiplexed networks, the Ethernet, or other Internet networks). This video coding standard can also be used at any bit rate range for various applications, varying from wireless video phones to high definition television (HDTV) and digital video broadcasting (DVB). In addition, H.264 provides significantly improved coding efficiency and greater functionality, such as rate scalability, “Intra” prediction and error resilience in comparison with its predecessors, MPEG-2 and H.263. However, H.264/AVC is much more complex in comparison to other coding standards and to achieve maximum quality encoding, high computational resources are required (Grois et al., 2010a; Kaminsky et al., 2008).
منابع مشابه
Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملScalable and Credible Video Watermarking towards Scalable Video Coding
This paper proposes a scalable and credible watermarking algorithm towards Scalable Video Coding (SVC) which aims to build Copyright Protection System (CPS). Firstly, we investigate where to embed watermark to ensure it can be detected in base layer as well as enhancement layer and what does wavelet Just Noticeable Distortion (JND) for video consist of, then a model that combines frequency mask...
متن کاملFast Intra Mode Decision for Depth Map coding in 3D-HEVC Standard
three dimensional- high efficiency video coding (3D-HEVC) is the expanded version of the latest video compression standard, namely high efficiency video coding (HEVC), which is used to compress 3D videos. 3D videos include texture video and depth map. Since the statistical characteristics of depth maps are different from those of texture videos, new tools have been added to the HEVC standard fo...
متن کاملTwo Novel Chaos-Based Algorithms for Image and Video Watermarking
In this paper we introduce two innovative image and video watermarking algorithms. The paper’s main emphasis is on the use of chaotic maps to boost the algorithms’ security and resistance against attacks. By encrypting the watermark information in a one dimensional chaotic map, we make the extraction of watermark for potential attackers very hard. In another approach, we select embedding po...
متن کاملScalable Video Delivery over Wireless LANs
Recent advances in wireless broadband networks and video coding techniques have led the rapid growth of wireless video services. In this chapter, we present a comprehensive study on the transmission of scalable video over wireless local area networks (WLAN). We analyze first the mechanisms and principles of the emerging scalable video coding (SVC) standard. We then introduce the IEEE 802.11 sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012